1. Rabe KF, Hurd S, Anzueto A, et al. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease: GOLD executive summary. Am J Respir Crit Care Med 2007; 176:532-55.
2. Caballero A, Torres-Duque CA, Jaramillo C, Bolivar F, Sanabria F, Osorio P, Orduz C, Guevara DP, Maldonado D. Prevalence of COPD in five Colombian cities situated at low, medium, and high altitude (PREPOCOL study). Chest 2008;133:343–349
3. Rennard SI, Vestbo J. COPD: the dangerous underestimate of 15%. Lancet 2006; 367:1216-9.
4. Buist AS, McBurnie MA, Vollmer WM, et al. International variation in the prevalence of COPD (the BOLD Study). A population – based prevalence study. Lancet 2007; 370: 741 -50.
5. Bruce N, Perez-Padilla R, Albalak R. Indoor air pollution in developing countries: a major environmental and public health challenge. Bull World Health Organ 2000; 78:1078-92.
6. Rivera RM, Cosio MG, Ghezzo H, et al. Comparison of lung morphology in COPD secondary to cigarette and biomass smoke. Int J Tuberc Lung Dis 2008; 12:972-7.
7. Cosio M, Ghezzo H, Hogg JC, et al. The relations between structural changes in small airways and pulmonary-function tests. N Engl J Med 1978; 298:1277-81.
8. Hunninghake GW, Crystal RG. Cigarette smoking and lung destruction: accumulation of neutrophils in the lungs of cigarette smokers. Am Rev Respir Dis 1983; 128:833-8.
9. Martin TR, Raghu G, Maunder RJ, Springmeyer SC. The effects of chronic bronchitis and chronic air-flow obstruction on lung cell populations recovered by bronchoalveolar lavage. Am Rev Respir Dis 1985; 132:254-60.
10. MacNee W. Pulmonary and systemic oxidant/antioxidant imbalance in chronic obstructive pulmonary disease. Proc Am Thorac Soc 2005; 2:50-60.
11. World Health Organization. World health statistics, 2010. Geneva (Switzerland): World Health Organization; 2010.
12. Ellegard A. Cooking fuel smoke and respiratory symptoms among women in low-income areas in Maputo. Environ Health Perspect 1996; 104:980–5.
13. Rinne ST, Rodas EJ, Rinne ML, et al. Use of biomass fuel is associated with infant mortality and child health in trend analysis. Am J Trop Med Hyg 2007; 76:585–91.
14. World Health Organization. Global health risks mortality and burden of disease attributable to selected major risks. Geneva (Switzerland): World Health Organization; 2009.
15. Salvi S, Barnes PJ. Is exposure to biomass smoke the biggest risk factor for COPD globally? Chest 2010; 138:3–6.
16. Tuder RM, Yoshida T, Arap W, Pasqualini R, Petrache I. State of the art: cellular and molecular mechanisms of alveolar destruction in emphysema: an evolutionary perspective. Proc Am Thorac Soc 2006; 3:503-10.
17. Majo J, Ghezzo H, Cosio MG. Lymphocyte population and apoptosis in the lungs of smokers and their relation to emphysema. Eur Respir J 2001; 17:946-53.
18. Cosio MG. Autoimmunity, T-cells and STAT-4 in the pathogenesis of chronic obstructive pulmonary disease. Eur Respir J 2004; 24:3-5.
19. Dennis RJ, Maldonado D, Norman S, et al. Woodsmoke exposure and risk for obstructive airways disease among women. Chest 1996; 109:115–9.
20. Jeneth Berlin Raj. T, Altered Lung Function Parameters in Asymptomatic Women using Biomass fuel for Cooking; Journal of Clinical and Diagnostic Research. 2014 Oct, Vol-8(10): BC01-BC03
21. Agusti A, MacNee W, Donaldson K, Cosio M. Hypothesis: does COPD have an autoimmune component? Thorax 2003; 58: 832-4.
22. Abbas AK, Lichtman AH, Pober JS. Effector mechanisms of cell-mediated immunity. In: Abbas AK, Lichtman AH, Pober JS, eds. Cellular and molecular immunology. 4th ed. New York: W.B. Saunders, 2000:291-308.
23. Matzinger P. The danger model: a renewed sense of self. Science 2002; 296: 301-5.
24. Parker LC, Prince LR, Sabroe I. Translational mini-review series on Toll-like receptors: networks regulated by Toll-like receptors mediate innate and adaptive immunity. Clin Exp Immunol 2007; 147:199-207.
25. Di Stefano A, Caramori G, Oates T, et al. Increased expression of nuclear factor kappaB in bronchial biopsies from smokers and patients with COPD. Eur Respir J 2002; 20:556-63.
26. Jiang D, Liang J, Li Y, Noble PW. The role of Toll-like receptors in non-infectious lung injury. Cell Res 2006; 16:693-701.
27. Mills PR, Davies RJ, Devalia JL. Airway epithelial cells, cytokines, and pollutants. Am J Respir Crit Care Med 1999; 160: S38-S43.
28. David M Mannino, Ruth Tal-Singer, David A. Lomas, Plasma Fibrinogen as a Biomarker for Mortality and Hospitalized Exacerbations in People with COPD; Chronic Obstr Pulm Dis (Miami). 2015; 2(1): 23–34.
29. Pinto-Plata VM, Müllerova H, Toso JF, Feudjo-Tepie M, Soriano JB, Vessey RS, et al. C-reactive protein in patients with COPD, control smokers and nonsmokers. Thorax 2006; 61:23 - 8.
30. Donaldson GC, Seemungal TA, Patel IS, Bhowmik A, Wilkinson TM, Hurst JR, et al. Airway and systemic inflammation and decline in lung function in patients with COPD. Chest 2005; 128:1995- 2004.
31. Wilson A, Leigh R, Hargreave F, Pizzichini M, Pizzichini E. Safety of sputum induction in moderate-to-severe smoking-related chronic obstructive pulmonary disease. COPD 2006; 3:89 - 93.
32. Barczyk A, Pierzcha1a W, Soza_nska E. Levels of CC-chemokine (MCP-1a, MIP-1b) in induced sputum of patients with chronic obstructive pulmonary disease and patients with chronic bronchitis. Pneumonol Alergol Pol 2001; 69: 40-9.
33. Dragonieri S, Tongoussouva O, Zanini A, Imperatori A, Spanevello A. Markers of airway inflammation in pulmonary diseases assessed by induced sputum. Monaldi Arch Chest Dis 2009; 71:119 - 26.
34. Kajbafzadeh M, Brauer M, Karlen B, et al. The impacts of traffic-related and woodsmoke particulate matter on measures of cardiovascular health: a HEPA filter intervention study. Occup Environ Med. 2015 Jun; 72(6):394-400.
35. Guarnieri MJ, Diaz JV, Basu C, Diaz A, Effects of woodsmoke exposure on airway inflammation in rural Guatemalan women. PLoS One. 2014 Mar 13; 9(3):e88455.
36. Julie B. Cho, Elizabeth Nguyen, Elizabeth Castellanos et al. Exposure to Wood Smoke Associated with Increased Risk of Asthma and Respiratory Symptoms in a Rural Population in Honduras. Ajrccm-conference 2015: A3216, 10.1164.
37. Ezzati M, Kammen DM. The health impacts of exposure to indoor air pollution from solid fuels in developing countries: knowledge, gaps, and data needs. Environ Health Perspect 2002; 110:1057–68.
38. Long, W., Tate, R. B., Neuman, M., Manfreda, J., Becker, A. B., and Anthonisen, N. R. 1998. Respiratory symptoms in a susceptible population due to burning of agricultural residue. Chest 113(2):351– 357.
39. Legros G, Havet I, Briuce N, et al. The energy access situation in developing countries: a review focusing on the least developed countries and sub-Saharan Africa. New York: United Nations Development Program; 2009.
40. Miah MD, Rashid HA, Shin MY. Wood fuel use in the traditional cooking stoves in the rural floodplain areas of Bangladesh: a socio-environmental perspective.Biomass Bioenergy 2009; 33:70–8.
41. Sallsten G, Gustafson P, Johansson L, et al. Experimental wood smoke exposure in humans. Inhal Toxicol 2006; 18:855–64.
42. Zhang J, Smith KR. Indoor air pollution: a global health concern. Br Med Bull 2003; 68:209–25.
43. Ezzati M, Kammen DM. The health impacts of exposure to indoor air pollution from solid fuels in developing countries: knowledge, gaps, and data needs. Environ Health Perspect 2002; 110:1057–68.
44. Lumley, Mio T, Romberger DJ, Thompson AB,Robbins RA, Heires A, Rennard SI. Cigarette smoke induces interleukin-8 release from human bronchial epithelial cells. Am J Respir Crit Care Med 1997; 155:1770-6.
45. Richards GA, Theron AJ, Van der Merwe CA, Anderson R. Spirometric abnormalities in young smokers correlate with increased chemiluminescence responses of activated blood phagocytes. Am Rev Respir Dis 1989; 139:181-7.
46. Barnes PJ, Cosio MG. Cells and mediators of chronic obstructive pulmonary disease. Eur Respir Monogr 2006; 38:130- 58.
47. Rao T, Richardson B. Environmentally induced autoimmune diseases: potential mechanisms. Environ Health Perspect 1999; 107: Suppl 5:737-42.
48. Rose N, Afanasyeva M. Autoimmunity: busting the atherosclerotic plaque. Nat Med 2003; 9:641-2.
49. Steinman L. State of the art: four easy pieces: interconnections between tissue injury, intermediary metabolism, autoimmunity, and chronic degeneration. Proc Am Thorac Soc 2006; 3:484-6.
50. Wedzicha JA, Seemungal TA, MacCallum PK, et al. Acute exacerbations of chronic obstructive pulmonary disease are accompanied by elevations of plasma fibrinogen and serum IL-6 levels [In Process Citation]. Thromb Haemost 2000; 84: 210–215.
51. Vernooy JH, Kucukaycan M, Jacobs JA, Chavannes NH, Buurman WA, Dentener MA, Wouters EF. Local and systemic inflammation in patients with chronic obstructive pulmonary disease: soluble tumor necrosis factor receptors are increased in sputum. Am J Respir Crit Care Med 2002; 166:1218–1224.
52. Yamamoto C, Yoneda T, Yoshikawa M, Fu A, Tokuyama T, Tsukaguchi K, Narita N. Airway inflammation in COPD assessed by sputum levels of interleukin-8. Chest 1997; 112:505–510.
53. Voelkel NF, Vandivier WV, Tuder RM. Vascular endothelial growth factor in the lung. Am. J. Phisiol. Lung Cell Mol Physiol.2006; 290:209-221.
54. Perez T1, Mal H, Aguilaniu B, Brillet PY,et al. [COPD and inflammation: statement from a French expert group. Phenotypes related to inflammation].Rev Mal Respir. 2011; 28(2):192-215
55. Santos S, Peinado VI, et al. Enhanced expression of vascular endothelial growth factor in pulmonary arteries of smokers and patients with moderate chronic obstructive pulmonary disease. Am J Respir Crit Care Med.2003; 167: 1250-1256.
56. Legros G, Havet I, Briuce N, et al. The energy access situation in developing countries: a review focusing on the least developed countries and sub-Saharan Africa. New York: United Nations Development Program; 2009.
57. Miah MD, Rashid HA, Shin MY. Wood fuel use in the traditional cooking stoves in the rural floodplain areas of Bangladesh: a socio-environmental perspective. Biomass Bioenergy 2009; 33:70–8.
58. Fuke S, Betsuyaku T, Nasuhara Y, Morikawa T, Katoh H, Nishimura M. Chemokines in bronchiolar epithelium in the development of chronic obstructive pulmonary disease. Am J Respir Cell Mol Biol2004; 31:405–412.
59. Russell RE, Culpitt SV, DeMatos C, Donnelly L, Smith M, Wiggins J, Barnes PJ. Release and activity of matrix metalloproteinase-9 and tissue inhibitor of metalloproteinase-1 by alveolar macrophages from patients with chronic obstructive pulmonary disease. Am J Respir Cell Mol Biol 2002; 26:602–609.
60. Rytila PH, Lindqvist AE, Laitinen LA. Safety of sputum induction in chronic obstructive pulmonary disease. Eur Respir J 2000; 15:1116–1119.
61. Schaefer L, Babelova A, Kiss E, et al. The matrix component biglycan is proinflammatory and signals through Toll-like receptors 4 and 2 in macrophages. J Clin Invest 2005; 115:2223-33.
62. Suzuki M, Betsuyaku T, et al. Decreased Airway Expression of Vascular Endothelial Growth Factor in Cigarette Smoke-Induced Emphysema in Mice and COPD Patients. Inhalation Toxicology, 2008; 20 (3):349-359
63. Seamus Grundy, Jonathan Plumb, Simon Lea, Down Regulation of T Cell Receptor Expression in COPD Pulmonary CD8 Cells; cell, August 2013 | Volume 8 | Issue 8 | 71629
64. Freeman CM, Curtis JL, Chensue SW. CC chemokine receptor 5 and CXC chemokine receptor 6 expression by lung CD8+ cells correlates with chronic obstructive pulmonary disease severity. Am J Pathol 2007; 171:767-76.
65. Jiang D, Liang J, Fan J, et al. Regulation of lung injury and repair by Toll-like receptors and hyaluronan. Nat Med 2005; 11:1173-9.
66. Marshak-Rothstein A. Toll-like receptors in systemic autoimmune disease. Nat Rev Immunol 2006; 6:823-35.
67. Lambrecht BN, Prins JB, Hoogsteden HC. Lung dendritic cells and host immunity to infection. Eur Respir J 2001; 18:692- 704.
68. Metcalfe HJ1, Lea S, Hughes D, Khalaf R, Effects of cigarette smoke on Toll-like receptor (TLR) activation of chronic obstructive pulmonary disease (COPD) macrophages. Clin Exp Immunol. 2014 Jun; 176(3):461-72.
69. Calabrese F, Giacometti C, Beghe B, et al. Marked alveolar apoptosis/proliferation imbalance in end-stage emphysema. Respir Res 2005; 6:14.
70. Moller DR, Forman JD, Liu MC, Noble PW, Greenlee BM, Vyas P, Holden DA, Forrester JM, Lazarus A, Wysocka M, et al. Enhancedexpression of IL-12 associated with Th1 cytokine profiles J Immunol 1996;156:4952–4960.
71. Freeman CM, Curtis JL, Chensue SW. CC chemokine receptor 5 and CXC chemokine receptor 6 expression by lung CD8+ cells correlates with chronic obstructive pulmonary disease severity. Am J Pathol 2007; 171:767-76.
72. Saetta M, Mariani M, Panina-Bordignon P, et al. Increased expression of the chemokine receptor CXCR3 and its ligand CXCL10 in peripheral airways of smokers with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2002; 165:1404-9.
73. O’Shaughnessy TC, Ansari TW, Barnes NC, Jeffery PK. Inflammation in bronchial biopsies of subjects with chronic bronchitis: inverse relationship of CD8+ T lymphocytes with FEV1. Am J Respir Crit Care Med 1997; 155:852-7.
74. Saetta M, Di Stefano A, Turato G, et al. CD8+ T-lymphocytes in peripheral airways of smokers with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 1998; 157:822-6.
75. Saetta M, Baraldo S, Corbino L, et al. CD8+ve cells in the lungs of smokers with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 1999; 160: 711-7.
76. Vernooy JH, Moller GM, van Suylen RJ, et al. Increased granzyme A expression in type II pneumocytes of patients with severe chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2007; 175:464-72.
77. Chrysofakis G, Tzanakis N, Kyriakoy D, et al. Perforin expression and cytotoxic activity of sputum CD8+ lymphocytes in patients with COPD. Chest 2004; 125:71-6.
78. Krieg AM, Vollmer J. Toll-like receptors 7, 8, and 9: linking innate immunity to autoimmunity. Immunol Rev 2007; 220: 251-69.
79. Gaipl US, Kuhn A, Sheriff A, et al. Clearance of apoptotic cells in human SLE. Curr Dir Autoimmun 2006; 9:173-87.
80. Rose NR, Bona C. Defining criteria for autoimmune diseases (Witebsky’s postulates revisited). Immunol Today 1993; 14: 426-30.
81. COPD: molecular and cellular mechanisms Eur Respir J 2003; 22: 672–688
82. Shawn D Aaron, Katherine L Vandemheen, Timothy Ramsay. Multi analyte profiling and variability o inflammatory markers in blood and induced sputum in patients with stable COPD. Respiratory Research; 2010 Vol. 11, pags 41-48
83. Hogg N, Berlin C. Structure and function of adhesion receptors in leukocyte trafficking. Immunol Today 1995; 16:327–330.
84. Berlin C, Bargatze RF, Campbell JJ, von Andrian UH, Szabo MC, Hasslen SR, Nelson RD, Berg EL, Erlandsen SL, Butcher EC. Alpha integrins mediate lymphocyte attachment and rolling under physiologic flow. Cell 1995; 80:413–422.
85. Kay Roy, Jacky Smith, Umme Kolsum, Zöe Borrill et al. COPD phenotype description using principal components analysis. Respiratory Research 2009, 10:41.
86. Yvonne Nussbaumer-Ochsner1, Jan Stolk, Luiz F et al. Association of Lung Inflammatory Cells with Small Airways Function and Exhaled Breath Markers in Smokers – Is There a Specific Role for Mast Cells?. PLOS ONE / DOI: 10.1371 / journal. June 12, 2015.
87. Mona Bafadhel, Koirobi Haldar, Bethan Barker. Airway bacteria measured by quantitative polymerase chain reaction and culture in patients with stable COPD: relationship with neutrophilic airway inflammation, exacerbation frequency, and lung function. International Journal of COPD 2015:10 1075–1083
88. Victor Kim, William D, Cornwell, Michelle Oros, Heba Durra. Plasma Chemokine signature correlates with lung goblet cell hyperplasia in smokers with and without chronic obstructive pulmonary disease. BMC Pulmonary Medicine (2015) 15:111
89. Golpe R, Sanjuán López P, Cano Jiménez E et al. Distribution of clinical phenotypes in patients with chronic obstructive pulmonary disease caused by biomass and tobacco smoke. Arch Bronconeumol. 2014 Aug;50(8):318-24
90. Alejandra Ramírez-Venegas, Raul H. Sansores, Roger H et al. FEV1 Decline in Patients with Chronic Obstructive Pulmonary Disease Associated with Biomass Exposure. American Journal of Respiratory and Critical Care Medicine Volume 190 Number 9 | November 1 2014.
91. Alejandra Ramırez Venegas, Raul H. Sansores, Rogelio Pérez-Padilla et al. Survival of Patients with Chronic Obstructive Pulmonary Disease Due to Biomass Smoke and Tobacco. Am J Respir Crit Care Med Vol 173. pp 393–397, 2006.
92. Pat G. Camp, Alejandra Ramirez-Venegas, Raul H. Sansores, et al. COPD phenotypes in biomass smokeversus tobacco smoke-exposed Mexican women. Eur Respir J 2014; 43: 725–734
93. Silva R, Oyarzún M, Olloquequi J. Pathogenic mechanisms in chronic obstructive pulmonary disease due to biomass smoke exposure. Arch Bronconeumol. 2015 Jun; 51(6):285-92
94. Solleiro-Villavicencio H, Quintana-Carrillo R, Falfán Valencia R et al. Chronic obstructive pulmonary disease induced by exposure to biomass smoke is associated with a Th2 cytokine production profile. Clin Immunol. 2015 Jul 26; 161(2):150-155.
95. Wang H, Ying H, Wang S et al. Imbalance of peripheral blood Th17 and Treg responses in patients with chronic obstructive pulmonary disease. Clin Respir J. 2015 Jul; 9(3):330-41.
96. Cellular and Structural Bases of Chronic Obstructive Pulmonary Disease Am J Respir Crit Care Med Vol 163. pp 1304–1309, 2001
97. Mukaida N, Matsumoto T, Yokoi K, et al. Inhibition of neutrophil-mediated acute inflammatory injury by an antibody against interleukin-8 (IL-8). Inflamm Res 1998; 47 (suppl 3): S151–S157
98. Nikoletta Rovina, Efrossini Dima, Christina Gerassimou. Interleukin-18 in induced sputum: Association with lung function in chronic obstructive pulmonary disease. Respiratory Medicine. 2009; Vol. 103, págs. 1056 - 1062.
99. Barnes P, Chowdhury B, Kharitonov S, Magnussen H, Page C, Postma D, et al. Pulmonary biomarkers in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2006; 174:6-14.
100. Franciosi LG, Page CP, Celli BR, Cazzola M, Walker MJ, Danhof M, et al. Markers of disease severity in chronic obstructive pulmonary disease. Pulm Pharmacol Ther 2006; 19:189-99.
101. Cazzola M, MacNee W, Martinez FJ, Rabe KF, Franciosi LG, Barnes PJ, et al. Outcomes for COPD pharmacological trials: from lung function to biomarkers. Eur Respir J 2008; 31:416-69.
102. Sin DD, Vestbo J. Biomarkers in chronic obstructive pulmonary disease. Proc Am Thorac Soc 2009; 6:543-5.
103. van der Vaart H, Postma D, Timens W, Kauffman H, Hylkema M, ten Hacken N. Repeated sputum inductions induce a transient neutrophilic and eosinophilic response. Chest 2006; 130:1157-64.
104. Wilson A, Leigh R, Hargreave F, Pizzichini M, Pizzichini E. Safety of sputum induction in moderate-to-severe smoking-related chronic obstructive pulmonary disease. COPD 2006; 3:89-93.
105. O. Holz, J. Kips, H. Magnussen. Update on sputum methodology. Eur Respir J 2000; 16: 355 – 359.
106. P. Chanez, O. Holz, P.W. Indz, R. Djukanovic. Sputum induction. Eur Respir J 2002; 20: Suppl. 37, 3s–8s
107. Barczyk A, Pierzcha1a W, Soza_nska E. Levels of CC-chemokine (MCP-1a, MIP-1b) in induced sputum of patients with chronic obstructive pulmonary disease and patients with chronic bronchitis. Pneumonol Alergol Pol 2001; 69: 40-9.
108. Nicholas B, Djukanovi_c R. Induced sputum: a window to lung pathology. Biochem Soc Trans 2009; 37:868-72.
109. Dragonieri S, Tongoussouva O, Zanini A, Imperatori A, Spanevello A. Markers of airway inflammation in pulmonary diseases assessed by induced sputum. Monaldi Arch Chest Dis 2009; 71:119-26.