1. Ali M, Sur D, You YA, Kanungo S, Sah B, Manna B, et al. Herd protection by a bivalent-killed-whole-cell oral cholera vaccine in the slums of Kolkata, India. Clinical infectious diseases. 2013:cit009.
2. Clemens J, Holmgren J. When, how, and where can oral cholera vaccines be used to interrupt cholera outbreaks? Cholera Outbreaks: Springer; 2013. p. 231-58.
3. Harris J. F, Ryan, ET, and Calderwood, SB. Cholera Lancet. 2012;379:2466-76.
4. Pitisuttithum P, Cohen MB, Phonrat B, Suthisarnsuntorn U, Bussaratid V, Desakorn V, et al. A human volunteer challenge model using frozen bacteria of the new epidemic serotype, V. cholerae O139 in Thai volunteers. Vaccine. 2001;20(5):920-5.
5. Laporte J-R, Vallvé C. Principios básicos de investigación clínica: AstraZeneca Barcelona; 2001.
6. Cobos-Carbo A, Augustovski F. Declaración CONSORT 2010: actualización de la lista de comprobación para informar ensayos clínicos aleatorizados de grupos paralelos. Medicina clínica. 2011;137(5):213-5.
7. Riegler G, Esposito I. Bristol scale stool form. A still valid help in medical practice and clinical research. Techniques in coloproctology. 2001;5(3):163-4.
8. Herzog C. Successful comeback of the single-dose live oral cholera vaccine CVD 103-HgR. Travel Medicine and Infectious Disease. 2016;14(4):373-7.
9. Charles RC, Hilaire IJ, Mayo-Smith LM, Teng JE, Jerome JG, Franke MF, et al. Immunogenicity of a killed bivalent (O1 and O139) whole cell oral cholera vaccine, Shanchol, in Haiti. PLoS Negl Trop Dis. 2014;8(5):e2828.
10. Sheets RL, Fritzell B, de Ros MTA. Human challenge trials in vaccine development: Strasbourg, September 29–October 1, 2014. Biologicals. 2016;44(1):37-50.
11. Lewis S, Heaton K. Stool form scale as a useful guide to intestinal transit time. Scandinavian journal of gastroenterology. 1997;32(9):920-4.
12. WHO. WHO. Cholera vaccines position paper. Wkly Epidemiol Rec 2010;85:117-28.
13. Chen WH, Greenberg RN, Pasetti MF, Livio S, Lock M, Gurwith Mea. Safety and immunogenicity of single-dose live oral cholera vaccine strain CVD 103-HgR, prepared from new master and working cell banks. Clinical and Vaccine Immunology. 2014;21(1):66-73.
14. Lagos R SMO, Wasserman SS, Prado V; Losonsky GA, Bustamante C, et al. Palatability, reactogenicity and immunogenicity of engineered live oral cholera vaccine CVD 103-HgR in Chilean infants and toddlers. . The Pediatric Infectious Disease Journal 1999;18(7):624-30.
15. Tacket CO CM, Wasserman SS, Losonsky G, Livio S, Kotloff K, et al. . Randomized, double-blind, placebo-controlled, multicentered trial of the efficacy of a single doseof live pral cholera vaccine CVD 103-HgR in preventing cholera following challenge with Vibrio cholerae O1 El Tor Inaba three moths afther vaccination. . Infect Immun 1999;67:6341-45.
16. Chen WH, Cohen MB, Kirkpatrick BD, Brady RC, Galloway D, Gurwith M, et al. Single-dose live oral cholera vaccine CVD 103-HgR protects against human experimental infection with Vibrio cholerae O1 El Tor. Clinical Infectious Diseases. 2016;62(11):1329-35.
17. Jackson SS, Chen WH. Evidence for CVD 103-HgR as an effective single-dose oral cholera vaccine. Future microbiology. 2015(0):1-11.
18. Herzog C. Successful comeback of the single-dose live oral cholera vaccine CVD 103-HgR. Travel Medicine and Infectious Disease. 2016.
19. Benitez JA, Silva AJ, Rodriguez BL, Fando R, Campos J, Robert A, et al. Genetic manipulation of Vibrio cholerae for vaccine development: construction of live attenuated El Tor candidate vaccine strains. Archives of medical research. 1996;27:275-84.
20. Robert A SA, Benítez JA, Rodríguez BL, Fando R, Campos J, et al. e. Taggin a Vibrio cholera. El Tor candidate vaccine strain by disruption of its hemagglutinin protease gene using a novel reporter enzime, Clostridium thermocellum endogluconase A. Vaccine 1996;14:1517-22.
21. Benítez JA, García L, Silva A, García H, Fando R, Cedré B, et al. Preliminary assessment of the safety and immunogenicity of a new CTXΦ-negative, hemagglutinin/protease-defective El Tor strain as a cholera vaccine candidate. Infection and immunity. 1999;67(2):539-45.
22. Garcia HM AG, Cedré B, Valmaceda T, Maestre JL, Días Jidy M, et al. . Selección de cepas atenuadas de Vibrio cholerae para la obtención de candidatos vacunales atenuados orales contra cólera. . Rev Cubana de Med Trop 2005;57(2):92-104.
23. García L DJM, García HM, Rodríguez BL, Fernández, Año G and et al. The Vaccine Candidate Vibrio cholerae 638 Is Protective against Cholera in Healthy Volunteers. . Infection and Immunity. 2005;73(5):3018-24.
24. García HM. Vacuna Cubana contra el cólera en Vacunas Cuba 1959-2008 Rojas Ochoa, F La Habana: Editorial Ciencias Médicas. 2011;Capítulo 17, parte ii:167-80.
25. Fernández RFV. Evaluación clínica de un candidato vacunal basado en la cepa atenuada 638 Vibrio cholerae O1 El Tor Ogawa. VacciMonitor. 2007;16(2):33.
26. Talavera A AG, García HM, Moreira T, Delgado H, Riverón L, et al. Process develoment for a Cuban cholera vaccine based on the attenuated strain Vibrio cholerae 638. . Vaccine 2006;37:46-9.
27. Valera R GH, Díaz Jidy M, Mirabal M, Armesto M, Fando R, et al. Randomized, double-blind, placebo-controlled trial to evaluate the safety and immunogenicity of live oral cholera vaccine 638 in Cuban adults. Vaccine 2009;27:6564-9.
28. García HM, Thompson, R., Valera, R., Fando, R., Fumane, J., Jani, I., Mirabal, M., Armesto, MI., Songane, M., Luis, S. . A single dose of live-attenuated 638 Vibrio cholerae oral vaccine is safe and immunogenic in adult volunteers in Mozambique. Vaccimonitor. 2011;20(3):1-8.
29. de Cantabria CRdF. Evaluación crítica de ensayos clínicos. Med Clin (Barc). 1993;100:780-7.
30. Bajaj JK BV, Joshi SG, Damle AS, Kayararte RP, Deshmukh AB. Epidemiology of cholera-a five year study. . J Com Dis 2001;33(4):282-5.
31. Mosley WH AS, Benenson AS, Ahmed A. . The relationship of vibriocidal antibody titre to susceptibility to cholera in family contacts of cholera patients. Bull WHO. 1968;38:777-85. .
32. Mosley WH BA, Barui R. A serological survey for cholera antibodies in rural east Pakistan. 1. The distribution of antibody in the control population of a cholera-vaccine field-trial area and the relation of antibody titre to the pattern of endemic cholera. Bull World Health Organ. 1968;38:327-34.
33. Heaton K, Radvan J, Cripps H, Mountford R, Braddon F, Hughes A. Defecation frequency and timing, and stool form in the general population: a prospective study. Gut. 1992;33(6):818-24.
34. de Nuremberg C. Código de Nuremberg. Recuperado de http://www. bioeticanet. info/documentos/Nuremberg. pdf; 1947.
35. de Nuremberg C. Tribunal Internacional de Nuremberg, 1947. Brasil; Ministério da Saúde, Conselho Nacional de Saúde Capacitação para Comitês de Ética em Pesquisa Brasília: Ministério da Saúde. 2006.
36. Zion D, Gillam L, Loff B. The Declaration of Helsinki, CIOMS and the ethics of research on vulnerable populations. Nature Medicine. 2000;6(6):615-7.
37. Apéndice F. Declaración de Helsinki.
38. Sack DA, Tacket CO, Cohen MB, Sack RB, Losonsky GA, Shimko J, et al. Validation of a volunteer model of cholera with frozen bacteria as the challenge. Infection and immunity. 1998;66(5):1968-72.
39. Darton TC, Blohmke CJ, Moorthy VS, Altmann DM, Hayden FG, Clutterbuck EA, et al. Design, recruitment, and microbiological considerations in human challenge studies. The Lancet Infectious Diseases. 2015;15(7):840-51.
40. Baik YO, Choi SK, Kim JW, Yang JS, Kim IY, Kim CW, et al. Safety and immunogenicity assessment of an oral cholera vaccine through Phase I clinical trial in Korea. Journal of Korean medical science. 2014;29(4):494-501.
41. Peña MdlA, Valera R, Mirabal M, Rodríguez M, Armesto M, Menéndez J, et al. Propuesta de un algoritmo para evaluar la causalidad de eventos adversos en los Ensayos Clínicos de Vacunas. VacciMonitor. 2008;17(3):21-6.
42. Ochoa-Martínez C, Ayala-Aponte A. MODELOS MATEMÁTICOS DE TRANSFERENCIA DE MASA EN DESHIDRATACIÓN OSMÓTICA MATHEMATICAL MODELS OF MASS TRANSFER IN OSMOTIC DEHYDRATION MODELOS MATEMÁTICOS DE TRANSFERENCIA DE MASA EN DESHIDRATACIÓN OSMÓTICA. CYTA-Journal of Food. 2005;4(5):330-42.