1. Ferrara R, Imbimbo M, Malouf R, Paget-Bailly S, Calais F, Marchal C, Westeel V. Single or combined immune checkpoint inhibitors compared to first-line platinum-based chemotherapy with or without bevacizumab for people with advanced non-small cell lung cancer. Cochrane Database Syst Rev. 2020 Dec 14;12(12):CD013257. doi: 10.1002/14651858.CD013257.pub2. Update in: Cochrane Database Syst Rev. 2021 Apr 30;4:CD013257. PMID: 33316104; PMCID: PMC8094159.
2. Tsung I, Worden FP, Fontana RJ. A Pilot Study of Checkpoint Inhibitors in Solid Organ Transplant Recipients with Metastatic Cutaneous Squamous Cell Carcinoma. Oncologist. 2021 Feb;26(2):133-138. doi: 10.1002/onco.13539. Epub 2020 Oct 15. PMID: 32969143; PMCID: PMC7873324.
3. O'Connell KA, Schmults CD. Treatment of metastatic cutaneous squamous cell carcinoma in a solid organ transplant recipient with programmed death-1 checkpoint inhibitor therapy. J Eur Acad Dermatol Venereol. 2022 Jan;36 Suppl 1:45-48. doi: 10.1111/jdv.17407. PMID: 34855241.
4. Kumar V, Shinagare AB, Rennke HG, Ghai S, Lorch JH, Ott PA, Rahma OE. The Safety and Efficacy of Checkpoint Inhibitors in Transplant Recipients: A Case Series and Systematic Review of Literature. Oncologist. 2020 Jun;25(6):505-514. doi: 10.1634/theoncologist.2019-0659. Epub 2020 Feb 11. PMID: 32043699; PMCID: PMC7288631.
5. Abdel-Wahab N, Safa H, Abudayyeh A, Johnson DH, Trinh VA, Zobniw CM, Lin H, Wong MK, Abdelrahim M, Gaber AO, Suarez-Almazor ME, Diab A. Checkpoint inhibitor therapy for cancer in solid organ transplantation recipients: an institutional experience and a systematic review of the literature. J Immunother Cancer. 2019 Apr 16;7(1):106. doi: 10.1186/s40425-019-0585-1. Erratum in: J Immunother Cancer. 2019 Jun 24;7(1):158. PMID: 30992053; PMCID: PMC6469201.
6. Ines T Simoes, Fernando Aranda, Sergi Casado-Llombart, Maria Velasco-de Andres, Cristina Catala, Pilar Alvarez, Marta Consuegra-Fernandez, Marc Orta-Mascaro, Ramon Merino, Jesus Merino, Jose Alberola-Ila, Gloria Gonzalez-Aseguinolaza, Esther Carreras, Vanesa Martinez,1 Francisco Lozano. Multifaceted effects of soluble human CD6 in experimental cancer models Journal for ImmunoTherapy of Cancer 2020;8:e000172
7. Jeffrey H. Ruth,1 Mikel Gurrea-Rubio,1 Kalana S. Athukorala,1 Stephanie M. Rasmussen,1 Daniel P. Weber,1 Peggy M. Randon,1 Rosemary J. Gedert,1 Matthew E. Lind,1 M. Asif Amin,1 Phillip L. Campbell,1 Pei-Suen Tsou,1 Yang Mao-Draayer,2 Qi Wu,2 Thomas M. Lanigan,1 Venkateshwar G. Keshamouni,3 Nora G. Singer,4,5 Feng Lin,6 and David A. Fox1. CD6 is a target for cancer immunotherapy JCI Insight. 2021;6(5):e145662.
8. Gimferrer I, Calvo M, Mittelbrunn M, Farnos M, Sarrias MR, Enrich C, et al. Relevance of CD6-mediated interactions in T cell activation and proliferation. J Immunol. 2004 173:2262–70.
9. Suzanne L. Topalian, Charles G. Drake, Drew M. Pardoll,Immune Checkpoint Blockade: A CommonDenominator Approach to Cancer Therapy,Cancer Cell,Volume 27, Issue 4,2015,Pages 450-461,ISSN 1535-6108,https://doi.org/10.1016/j.ccell.2015.03.001.
10. Perez, L.; Samlowski, W.; Lopez-Flores, R. Outcome of Elective Checkpoint Inhibitor Discontinuation in Patients with Metastatic Melanoma Who Achieved a Complete Remission: Real-World Data. Biomedicines 2022, 10, 1144. https://doi.org/10.3390/ biomedicines10051144