1Menk M, Estenssoro E, Sahetya SK, Neto AS, Sinha P, Slutsky AS, et al. Current and evolving standards of care for patients with ARDS. 2020;46:2157-67.
2. Shankar-Hari M, Fan E, Ferguson NJIcm. Acute respiratory distress syndrome (ARDS) phenotyping. 2019;45:516-9.
3. Ashbaugh D, Bigelow DB, Petty T, Levine BJTL. Acute respiratory distress in adults. 1967;290(7511):319-23.
4. Bernard GR, Artigas A, Brigham KL, Carlet J, Falke K, Hudson L, et al. The American-European Consensus Conference on ARDS. Definitions, mechanisms, relevant outcomes, and clinical trial coordination. 1994;149(3):818-24.
5. Murray JF, Matthay MA, Luce JM, Flick MRJARRD. An expanded definition of the adult respiratory distress syndrome. 1988;138(3):720-3.
6. Ferguson ND, Fan E, Camporota L, Antonelli M, Anzue.
...
Ishii Y, Fujimoto S, Fukuda T. Gefitinib prevents bleomycin-induced lung fibrosis in mice. Am J Respir Crit Care Med. 2006;174(5):550-6.
48. Ohmori T, Yamaoka T, Ando K, Kusumoto S, Kishino Y, Manabe R, et al. Molecular and Clinical Features of EGFR-TKI-Associated Lung Injury. Int J Mol Sci. 2021;22(2).
49. Suh CH, Park HS, Kim KW, Pyo J, Hatabu H, Nishino M. Pneumonitis in advanced non-small-cell lung cancer patients treated with EGFR tyrosine kinase inhibitor: Meta-analysis of 153 cohorts with 15,713 patients: Meta-analysis of incidence and risk factors of EGFR-TKI pneumonitis in NSCLC. Lung Cancer. 2018;123:60-9.
50. Fernandez A, Spitzer E, Perez R, Boehmer FD, Eckert K, Zschiesche W, et al. A new monoclonal antibody for detection of EGF‐receptors in western blots and paraffin‐embedded tissue sections. 1992;49(2):157-65.
51. Mateo C, Moreno E, Amour K, Lombardero J, Harris W, Perez R. Humanization of a mouse monoclonal antibody that blocks the epidermal growth factor receptor: recovery of antagonistic activity. Immunotechnology. 1997;3(1):71-81.
52. Crombet-Ramos T, Rak J, Perez R, Viloria-Petit A. Antiproliferative, antiangiogenic and proapoptotic activity of h-R3: A humanized anti-EGFR antibody. Int J Cancer. 2002;101(6):567-75.
53. Perez R, Moreno E, Garrido G, Crombet T. EGFR-Targeting as a Biological Therapy: Understanding Nimotuzumab's Clinical Effects. Cancers (Basel). 2011;3(2):2014-31.
54. Rengifo CE, Blanco R, Blanco D, Cedeño M, Frómeta M, Calzado ERJJoB. Immunohistochemical characterization of three monoclonal antibodies raised against the epidermal growth factor and its receptor in non-small-cell lung cancer: their potential use in the selection of patients for immunotherapy. 2013;2013.
55. Mazorra Z, Lavastida A, Concha-Benavente F, Valdes A, Srivastava RM, Garcia-Bates TM, et al. Nimotuzumab Induces NK Cell Activation, Cytotoxicity, Dendritic Cell Maturation and Expansion of EGFR-Specific T Cells in Head and Neck Cancer Patients. Front Pharmacol. 2017;8:382.
.
.
a. . Shiffka SJ, Kane MA, Swaan PW. Planar bile acids in health and disease. Biochim Biophys Acta Biomembr. [Internet]. 2017 [Citado 2021 Marz 20];1859(11):2269-2276. Disponible en: https://www.doi.org/10.1016/j.bbamem.2017.08.019
b. Ticho AL, Malhotra P, Dudeja PK, Gill RK, Alrefai WA. Intestinal Absorption of Bile Acids in Health and Disease. Compr Physiol. [Internet]. 2019 [Citado 2021 Marz 20];10(1):21-56. Disponible en: https://www.doi.org/10.1002/cphy.c190007
c. Chiang JYL, Ferrell JM. Bile Acids as Metabolic Regulators and Nutrient Sensors. Annu Rev Nutr. [Internet]. 2019 [Citado 2021 Marz 20];39:175-200. Disponible en: https://www.doi.org/10.1146/annurev-nutr-082018-124344
d. Režen T, Rozman D, Kovács T, Kovács P, Sipos A, Bai P, Mikó E. The role of bile acids in carcinogenesis. Cell Mol Life Sci. [Internet]. 2022 [Citado 2021 Marz 20];79(5):243. Disponible en: https://www.doi.org/10.1007/s00018-022-04278-2.
e. Piñol JFN, Ruiz Torres JF, Segura Fernández N, Proaño Toapanta PS, Sánchez Figueroa EM. “The gallbladder as a reservoir and protector of the digestive tract.” Rev. Cubana Invest Bioméd. [Internet]. 2020 [Citado 2021 Marz 20];39(1). Disponible en: http://www.revibiomedica.sld.cu/index.php/ibi/article/view/259
f. Piñol JFN, Ruiz Torres JF, Segura Fernández N, Proaño Toapanta PS, Sánchez Figueroa EM. Biological and toxicological activity of bile acids today. Rev. Cubana Invest Bioméd. [Internet]. 2020 [Citado 2021 Marz 20];39(1). Disponible en: http://www.revibiomedica.sld.cu/index.php/ibi/article/view/260
g. Nguyen TT, Ung TT, Kim NH, Jung YD. Role of bile acids in colon carcinogenesis. World J Clin Cases. [Internet]. 2018 [Citado 2021 Marz 20];6(13):577-88. Disponible en: https://www.doi.org/10.12998/wjcc.v6.i13.577
h. Jia W, Xie G, Jia W. Bile acid-microbiota crosstalk in gastrointestinal inflammation and carcinogenesis. Nat Rev Gastroenterol Hepatol. [Internet]. 2018 [Citado 2021 Marz 20];15(2):111-28. Disponible en: https://www.doi.org/10.1038/nrgastro.2017.119
i. Jin G, Lv J, Yang M, Wang M, Zhu M, Wang T, Yan C, et al. Genetic risk, incident gastric cancer, and healthy lifestyle: a meta-analysis of genome-wide association studies and prospective cohort study. Lancet Oncol. [Internet]. 2020 [Citado 2021 Marz 20];21(10):1378-1386. Disponible en: https://www.doi.org/10.1016/S1470-2045(20)30460-5